
HEAR ME OUT (& THINK): MAESTRO, A MULTIMODAL AGENTIC 

MODEL WITH EFFICIENT, SYNERGISTIC TEXT-REASONING 

OPTIMISATION FRAMEWORK 
 

Felicia Tan Ee Shan1, Low Li Ying Amy1, Kuek Yong Jie Adriel2 
1Raffles Institution, 1 Raffles Institution Ln, Singapore 575954 

2DSO National Laboratories, 12 Science Park Dr, Singapore 118225 

 

 

Abstract 

The video-audio modality remains a critical challenge for current Vision-Language Models 

(VLMs) due to weak static reasoning, ineffective integration of the auditory modality and high 

computational overhead, thus compromising performance on complex reasoning tasks like 

hateful video detection. Moreover, multimodal content’s proliferation has significantly 

increased the complexity of hateful video detection. Our framework, MAESTRO, overcomes 

these challenges by aligning visual and auditory modalities into a unified space through our 

proposed MAESTRO–Unified Multimodal Alignment framework, enabling a more holistic 

understanding of multimodal interactions. It also utilises our proposed MAESTRO– Adaptive 

Global-Local Reasoning Loop that combines detailed local insights with broader contextual 

analysis and employs a dynamic iterative reasoning approach, which adapts to tasks without 

the computational burden of exhaustive frame-by-frame processing. MAESTRO achieves 

state-of-the-art (SOTA) on MultiHateClip, while achieving localisation ability and improved 

multimodal reasoning. Additionally, MAESTRO achieves SOTA on industry benchmarks 

MSRVTT-QA, MSVD-QA and ActivityNet-QA for general video understanding, highlighting 

its advancement of general VLM video understanding. These results demonstrate its potential 

as a foundational framework for diverse multimodal reasoning tasks as well as broader 

applications beyond the hateful video detection use-case like misinformation detection, disaster 

response, and human rights monitoring 

 

1 Introduction 

The proliferation of multimedia content has significantly increased the complexity of 

multimodal information, particularly for hateful video detection. Platforms like YouTube see 

over 500 hours of video uploaded every minute [1], while TikTok and Bilibili have reached 

billions of global users [2]. The sheer volume and diversity of such content exacerbate the 

difficulty of timely and effective content moderation. Yet, current content moderation systems 

rely on labour-intensive manual reviews, which are inefficient, limited in scale, and expose 

moderators to mental distress, resulting in a higher risk of mental disorders such as PTSD [3]. 

 

While advancements in Vision-Language Models (VLMs) have facilitated some automation in 

hateful video detection, their capabilities remain constrained in multimodal reasoning, 

computational efficiency, and integration of diverse data sources [4]. Evidently, the video 

modality, often accompanied by complex relationships with audio and text, remains a critical 

challenge for VLMs. To address these gaps, we propose MAESTRO (Multimodal Agentic 

model with Efficient, Synergistic Text-Reasoning Optimisation framework), a novel 

framework that redefines multimodal understanding and reasoning in VLMs by integrating 

vision, language, and audio into a unified, context-aware system.  

 

Unlike traditional VLMs, MAESTRO 

1. Achieves novel and effective integration of the commonly overlooked audio 

modality through alignment of visual and audio components into a unified space  



2. Utilises dynamic, iterative and context-aware reasoning without the need to sample 

every frame, while still ensuring fine-grained understanding (local) and global 

understanding 

3. Achieves SOTA reasoning and performance on general video Visual Question 

Answering (VQA) as well as the specific use-case of hateful video detection 
 

2 Literature Review 

2.1 Vision Language Models (VLMs) 

VLMs have shown significant advances by integrating visual and textual data through 

multimodal architectures that typically consists of three main components: an image encoder, 

a text encoder, and a fusion mechanism [4]. While current VLMs like VideoChat and LLaVA 

predominantly rely on large language models (LLMs) as decoders, this limits their control over 

cross-modal interactions and reasoning abilities.  

 

In contrast, in MAESTRO, we propose for LLMs to act as control agents so as to leverage an 

agentic framework for more dynamic and context-aware cross-modal reasoning.  

 

Additionally, MAESTRO overcomes the following limitations of current VLMs: 

 
Table 1: Limitations of current VLMs and how MAESTRO addresses them 

2.2 Importance of Audio Modality  

The audio modality remains a critically underexplored dimension in video-language 

modelling, despite its crucial role in providing rich contextual and semantic cues. 

Contemporary methods like PG-Video-LLaVA [5] treat the audio modality as an auxiliary text 

source by appending the transcript to a prompt for processing by LLMs, neglecting non-speech 

elements like environmental sounds, music, and speaker intonation, as well as the temporal 

alignment with video. Alternatives, like Video-LLaMA [6] and MA-LMM [7], use query 

transformers (Q-formers) to process audio directly, but introduce significant computational 

overhead, with costs scaling quadratically with temporal resolution. For both approaches, most 

models still treat video and audio as entirely separate modalities, processed in parallel streams, 

limiting their ability to capture complex multimodal relationships. 

 
 



Figure 1: Left: An example of a video where visual content is non-hateful, but the audio 

introduces hateful elements. Right: An example of a video where audio is non-hateful, but 

combining both video and audio presents hateful content 

 

As seen in the above example, the audio modality and its temporal alignment with the video 

modality is essential to understanding the hateful content above.  

2.3 Visual Question-Answering (VQA) and Hateful Video Classification  

Despite progress in text-based hate speech detection through Natural Language Processing 

(NLP) techniques, current models face substantial challenges when applied to multimodal 

content, where both visual and auditory cues shape the overall context. To illustrate, for the 

general video VQA task, on MSRVTT, the current state-of-the-art (SOTA) performance, 

achieved by LLaVA-OneVision, is an F1 score of 49.8. While this is the best result reported to 

date, it remains unsatisfactory for real-world applications. Similarly, on ActivityNet-QA, 

LLaVA-OneVision achieves a SOTA F1 score of 56.6, which also reflects significant room for 

improvement. 

 

For the specific task of hateful video classification, empirical experimentation on the 

MultiHateClip dataset [8] reveals that most existing models perform poorly. Common issues 

include producing entirely incorrect predictions or demonstrating flawed reasoning (refer to 

Figure 6 for illustrative examples). Upon error analysis of models’ performance on the 

MultiHateClip dataset, while some models struggle to detect specific hateful elements, the 

larger issue lies in their inability to reason about the content. Moreover, hateful content often 

relies on subtle cues like sarcasm and coded language that carries different connotations across 

cultural contexts, making classification especially challenging. The temporal modality, where 

hatefulness emerges only when multiple frames or audio segments are considered together, 

further complicates detection. These challenges underscore the necessity for more advanced 

architectures that integrate the audio modality, temporal analysis, and dynamic reasoning. 

3 Model Architecture 

3.1 Pipeline  

 
Figure 2: An overview of MAESTRO’s pipeline 

3.2 Video Modality  

Achieving fine-grained understanding in VLMs often necessitates processing a vast number of 

video frames, leading to high computational costs that scale significantly with input length. 

However, the necessity of processing every single frame to understand a video is questionable. 

However, processing every frame may not be necessary. Unlike exhaustive frame-by-frame 

methods, humans first grasp the broader context (global) and then focus selectively on key 

segments (local), iteratively refining their understanding. Rather than demanding the capacity 



to process all visual inputs simultaneously, this approach underscores the greater importance 

of reasoning capabilities to prioritise and revisit content efficiently. Inspired by this principle, 

we propose MAESTRO, a system that mimics this selective and iterative process. By 

dynamically identifying and analysing the most pertinent frames or segments, MAESTRO 

avoids the computational overhead of exhaustive video analysis while achieving SOTA 

performance in hateful video detection and general video VQA. 

 

MAESTRO’s pipeline begins with:  

3.2.1 Transcript Chunking and Concept Representation 

Let 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} represent the transcript tokens extracted from the video's accompanying 

text. Using a BERT-based module [9], the transcript is segmented into 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘} , 

where 𝑐𝑖  denotes the i-th semantic "chunk," encapsulating a coherent conceptual unit. 

Formally, this is expressed as 𝑐𝑖 = BERT(𝑇𝑖),  𝑖 ∈ {1, … , 𝑘}  where 𝑇𝑖 ⊆ 𝑇 refers to the 

tokens grouped into the i-th chunk. Each 𝑐𝑖  acts as a guiding concept for subsequent stages. 

For a given chunk 𝑐𝑖, its associated temporal span in the video is denoted as Δ𝑡𝑖 = [𝑡start
𝑖 , 𝑡end

𝑖 ] 

. Corresponding video frames 𝐹Δ𝑡𝑖
= {𝑓1, 𝑓2, … , 𝑓𝑚} within this interval are selected. These 

frames are paired with the semantic chunk to form what we term idea-frame pairs 𝑃 =

{(𝑐1, 𝐹Δ𝑡1
), … , (𝑐𝑘, 𝐹Δ𝑡𝑘

)}. This pairing is represented as 𝑃𝑖 = (𝑐𝑖, 𝐹Δ𝑡𝑖
), 𝑖 ∈ {1, … , 𝑘}.  

 
Figure 3: An overview of how Idea-Frame Pairs are formed through semantic chunking and 

grouping of video frames  

 

3.3 Audio Modality  

As aforementioned, the missing/ineffective integration of the audio modality into current 

VLMs critically limits performance, as they often miss out on important context present in the 

audio only.  

 

3.3.1 MAESTRO-Unified Multimodal Alignment 

To address this gap of audio integration, we propose the MAESTRO framework, a novel 

approach that unifies visual, textual, and audio modalities into a shared feature space. This 

integration enables rich multimodal interactions, enhancing comprehensive understanding 

while reducing computational inefficiencies and preserving contextual richness. MAESTRO 

first decomposes audio input into two parts (1) Speech Audio (2) Non-Speech Audio.  

 

(1) Speech Audio 



The audio input is segmented into speech intervals using Voice Activity Detection (VAD), 

which maps an acoustic feature sequence 𝐴 = {𝑎1, … , 𝑎𝑇} to binary labels 𝑦 = {𝑦1, … , 𝑦𝑇} 

where 𝑦𝑡 = 1 indicates speech presence 

 

Post-processing converts 𝑦  into active speech segments 𝑆 = {𝑠1, … , 𝑠𝑁} , defined by 

timestamps (𝑡𝑖
0, 𝑡𝑖

1). To handle variable segment lengths, we employ a min-cut strategy for 

overly long segments and split at the point of minimum voice activation score. Conversely, 

short segments are merged with neighbours if their combined duration is below a threshold τ =
|𝐴train|, maintaining temporal consistency. Processed segments are transcribed in parallel using 

Whisper [10] yielding independent text outputs 𝑇 = {𝑇1, … , 𝑇𝑁}. This approach avoids context-

dependent errors like repetition. For precise word timing, forced phoneme alignment is applied. 

Each segment’s phonemes 𝐶𝑇𝑖
 are classified, producing logits 𝐿𝑖 ∈ 𝑅|𝐶𝑇𝑖

|×𝑇 . Dynamic Time 

Warping (DTW) aligns phonemes temporally, and word boundaries are derived from their start 

and end times. These high-quality text embeddings are then aligned into the unified text feature 

space, ensuring compatibility with other modalities and preserving semantic alignment. 

 

(2) Non-Speech Audio  

However, non-speech audio components, such as environmental sounds, music, and speaker 

intonations, carry significant semantic value that contributes to the overall meaning of the 

video. Despite this, they are often underrepresented or neglected in current audio modelling 

approaches, which primarily focus on speech content. 

 

To capture non-speech audio, our custom MAESTRO-CLAP [11] module employ two distinct 

audio encoders: PANN [12] and HTSAT [13] (Refer to Appendix 1.1 for detailed architecture) 

• PANN: A CNN-based audio classification model with 7 downsampling and 7 

upsampling blocks. Its penultimate layer produces a 2048-dimensional feature vector, 

where 𝑧PANN ∈ 𝑅𝟚𝟘𝟜𝟠 

• HTSAT: A state-of-the-art transformer model featuring 4 groups of Swin Transformer 

blocks, outputting a 768-dimensional feature vector, where 𝒛HTSAT ∈ 𝑅𝟟𝟞𝟠 

These audio encodings are passed through a two-layer MLP with ReLU activation to project 

them into a unified 512-dimensional space, with 𝑓audio = MLPaudio(𝑧audio),  𝑓audio ∈ 𝑅𝟝𝟙𝟚. For 

text, three encoders are utilised: CLIP [14], BERT [9], and RoBERTa [15]. Their respective 

outputs are 𝑧CLIP ∈ 𝑅𝟝𝟙𝟚,  𝒛BERT 𝑎𝑛𝑑 𝒛RoBERTa ∈ 𝑅𝟟𝟞𝟠 . These are also projected to the 

shared 512-dimensional space through a Multilayer Perceptron (MLP), with 𝑓text =
MLPtext(𝑧text),  𝑓text ∈ 𝑅𝟝𝟙𝟚. 

Unified Representation with Contrastive Learning 

Given audio features 𝑓audio and text features 𝑓text , encoders are trained using a contrastive loss 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒  =  −
1

𝑁
 ∑ 𝑙𝑜𝑔 

𝑒𝑥𝑝(𝑓audio
𝑖  ∙ 𝑓text

𝑖  ∕𝜏)

∑ 𝑒𝑥𝑝(𝑓audio
𝑖  ∙ 𝑓text

𝑖  ∕𝜏)𝑁
𝑗=1

𝑁
𝑖 = 1  to align audio and text embeddings in the 

shared space.  



 
Table 2: Details of training configuration of our custom MAESTRO-CLAP module  

 

MAESTRO-CLAP has been found to demonstrate strong zero-shot performance (F1-score of 

0.84, Refer to Appendix 1.2 for detailed results) compared to other non-speech audio classifiers 

when evaluated on our custom SocialSound-11k dataset containing 11028 audio-text pairs of 

common sound effects found in social media videos. Its zero-shot capability enables it to adapt 

to new and unseen sounds, making it highly scalable for dynamic environments like social 

media, where viral audio trends and memes emerge daily. 

 

 
Figure 4: MAESTRO projects 1) Speech Audio 2) Non-speech Audio 3) Visual Frames into 

one unified text space for multimodal alignment  

 

3.4 MAESTRO– Adaptive Global-Local Reasoning Loop 

We propose MAESTRO– Adaptive Global-Local Reasoning Loop to ensure comprehensive 

reasoning across temporal and fine-grained dimensions, motivated by the reasoning in 

Appendix 1.3. Inspired by the iterative reasoning approach for long form video understanding 

of VideoAgent [16], we extend this method for enhancing the depth and localisation of 

reasoning in our framework. This enables context-aware and temporally coherent video 

understanding that combines local insights with broader contextual analysis. 

Global Reasoning 

To achieve global reasoning, we construct a Global Representation by summarizing the video 

across its temporal dimension. Each video V is divided into N chunks {𝐶1, 𝐶2, … , 𝐶𝑁}. From 

each chunk, we select a pair of keyframes {𝐹𝑖
1, 𝐹𝑖

2} to serve as representative frames 𝐆 =
ℱglobal(𝑉) = ⋃ {𝑔(𝐹𝑖

1)𝑁
𝑖=1 , 𝑔(𝐹𝑖

2)}, where 𝑔(⋅) represents the feature extraction function of the 

vision encoder. The aggregated global representation 𝐆 ∈ 𝑅𝑁×𝑑  captures temporal 

dependencies and broader context. 



Local Reasoning 

For localised understanding, each chunk 𝐶𝑖 undergoes fine-grained analysis to generate Local 

Representations, focusing on textual and visual features: 

1. Speech Audio: Text embeddings 𝐳speech are derived from the speech component. 

2. Non-Speech Audio: Non-verbal sound components 𝐳non-speech are processed as 

explained.  

3. Visual Frames: Frame-level fine-grained captions 𝐳visual are generated using LLaVA-

OneVision. 

The local representation 𝐋𝐢 for chunk 𝐶𝑖 is then expressed as 𝐋𝐢 =

{𝑝θ(𝑧speech), 𝑝θ(𝑧non-speech), 𝑝θ(𝑧visual)}, where 𝑝θ(⋅) aligns each modality into the unified text 

space. Both global (𝐆) and local (𝐋𝐢) representations are aligned within a shared text space to 

enable cross-modal interaction.  

 

Initial State Representation 

The initial state of the video 𝐻init is formed by combining the Global Representation G with the 

set of initial Local Representations {𝐿1, 𝐿2, … , 𝐿𝑁}, providing a comprehensive starting point 

𝐻init = 𝐺 ∪ ⋃ 𝐿𝑖
𝑁
𝑖=1  

 

Deciding the Subsequent Action 

At each round, the current state, 𝑯𝒕, aggregating all observed frames and context, is input into 

ChatGPT-3.5 to decide the next action via a structured reasoning processing: 

• Action 1: Generate an Answer if 𝑯𝒕 contains sufficient information  

• Action 2: Gather Additional Context if 𝑯𝒕 lacks critical details 

This decision is facilitated through a structured three-step reasoning approach: 

1. Hypothesis Generation: Proposes a preliminary answer with chain-of-thought 

reasoning.  

2. Confidence Evaluation: Assigns a confidence score 𝑐𝑡 ∈ {1,2,3} to 𝐻𝑡 

o 𝑐𝑡 = 1: The information is insufficient. 

o 𝑐𝑡 = 2: Partial information is available but incomplete. 

o 𝑐𝑡 = 3: The information is complete. 

3. Action Decision: Executes Action 1 for 𝑐𝑡 = 3; otherwise, performs Action 2 to gather 

more information  

The initial state, 𝑯𝒊𝒏𝒊𝒕, comprises the Global Representation 𝐆 with the set of initial Local 

Representations {𝑳𝟏, 𝑳𝟐, … , 𝑳𝑵} , and the process progressively refines 𝑯𝒕  to achieve a 

comprehensive understanding before generating the final output for reasoning.  

Agents for Gathering New Observations 

The recent emergence of agentic systems, which are advanced AI models with autonomous 

decision-making and adaptability for complex tasks have gained significant traction [17]. 

Using a modular architecture, they assign specialised tools to different data features, enhancing 

efficiency and performance. This approach enables adaptive information retrieval, making 

them ideal for automating complex workflows across various domains. 

 

Leveraging these benefits, we deploy a modular agentic  system to facilitate adaptive 

information retrieval when the system determines that further context is required (Action 2). 

The retrieval process is guided by a structured prompt, Prompt 1 (Appendix 1.4).  

Tool 1: LLaVAOneVision – Action Recognition 



LLaVAOneVision [18] is employed as the action recognition tool. It excels at generating video 

descriptions with minimal hallucination, making it reliable for tasks demanding accurate 

interpretation of actions and object interactions. However, it lacks advanced reasoning 

capabilities, making it less suitable for inference-heavy tasks. 

Tool 2: YOLO – Symbol Recognition 

YOLO (You Only Look Once) [19] is integrated for its robust ability to recognize symbols, 

such as logos or hate symbols (e.g., swastikas), making it valuable for scenarios requiring 

nuanced symbol detection such as our example use case of hateful video detection. 

Tool 3: videoDeepFace – Identity Tracking 

Building on the image-based DeepFace model [20], we introduce videoDeepFace, a novel 

extension that extends DeepFace across the temporal dimension to handle video sequences for 

face identification while ensuring continuous identity tracking for multiple faces across frames, 

preventing identity swaps. videoDeepface additionally integrates features, such as hair colour, 

to improve demographic classification (e.g. race). 

 
Figure 5: Demonstration of videoDeepFace's capabilities for continuous identity tracking 

and demographic classification (race, age, gender, emotion) in video sequences 

Updating the current state 

After information retrieval, the current state, 𝑯𝒕, is updated with new observations and 

iteratively refined, ensuring the model adapts its reasoning to the specific task. After each 

update, the system re-evaluates the confidence score (𝒄𝐭) to determine whether the model is 

ready to classify the video (Action 1) or if further context is needed, thus continuing the cycle 

of state updates (Action 2) 

Final Decision 

The model makes its final decision based on Prompt 2 (Appendix 1.5) that decomposes the 

task of identifying whether a video is hateful into two specific criteria. Refer to Appendix 1.6 

for a diagrammatic overview of MAESTRO’s reasoning loop. 

4 Results 

4.1 Hateful Video Detection (MultiHateClip Dataset) 

 
Table 2: Model performance for English YouTube hateful video classification. Metrics: H = 

Hateful, O = Offensive, Acc = Accuracy, M-F1 = Macro F1, R = Recall, P = Precision. Best 

results are bolded, second-best are underlined. Models include Multimodal (M), Video-only 

(V), Text-only (T), Audio-only (A), and Vision-Language (VL).  

 



Experimental results show our model outperforming other current VLMs across all metrics on 

the MultiHateClip dataset [8]. Notably, unlike other models that were specifically fine-tuned 

on the dataset before evaluation, our framework operates without requiring dataset-specific 

training. Despite this, it achieves SOTA by a considerable margin in both quantitative and 

qualitative evaluations. Remarkably, MAESTRO surpasses GPT-4V, which is widely regarded 

as the gold standard for vision-language tasks. It is worth noting that GPT-4V was trained using 

an immense amount of computational resources by OpenAI – an estimated 25,000 Nvidia A100 

GPUs running continuously for approximately 90 to 100 days [21]. In contrast, our framework 

matches GPT-4V’s performance with only a significantly smaller fraction of computation 

resources (2 Nvidia T4 GPUs), showcasing the comparative computational efficiency and 

scalability of our approach. Refer to Appendix 1.7 for the breakdown of the usage of the various 

agents.  

 
Figure 6: A comparative analysis of MAESTRO v.s. SOTA models, evaluated on a 

challenging example. 

Localisation and Segmentation Capability 

As evident from Figure 4, MAESTRO can localise both distinct segments with hateful content 

present —one involving the male speaker and another involving the female speaker—and 

provide contextually grounded explanations for both. This capability is in stark contrast to other 

models like Video-LLaMA-7B and LLaVA-OneVision, which fail to detect either of these 

segments. Such fine-grained localisation is crucial in multimodal tasks where important content 

may be sparsely distributed across temporal and visual dimensions. 

Improved Reasoning and Labelling Accuracy 

MAESTRO demonstrates significant improvements in reasoning ability compared to other 

models. While Video-LLaMA-7B and LLaVA-OneVision incorrectly classify the video as 

“not hateful”, MAESTRO correctly labels the video as “HATEFUL” and provides the correct 

explanation. This nuanced reasoning underscores MAESTRO’s capacity to align multimodal 

inputs (audio and video) with contextual semantics to arrive at well-justified conclusions. Refer 

to Appendix 1.8 for further analysis of results. 

 

4.2 Advancing General VQA in VLMs (Industry Benchmarks) 

While MAESTRO demonstrates exceptional performance in hateful video detection, its design 

as a unified, context-aware multimodal reasoning framework extends far beyond this specific 

use-case.  

 

 

 

 

 

 

 

 



Table 3: Model performance (F1-score) on Industry Benchmarks 

As shown in Table 3, MAESTRO significantly outperforms other competing VLMs across the 

MSRVTT-QA [22], MSVD-QA [22], and ActivityNet-QA [23] benchmarks, achieving SOTA 

F1-scores of 82.0%, 86.9%, and 87.2%, respectively. These benchmarks test video question-

answering capabilities, evaluating understanding of actions, objects, events, and high-level 

activities in videos, thus demonstrating how MAESTRO advances multimodal reasoning in 

vision-language models (VLMs) broadly, beyond the specific application of hate speech 

detection. 

 

MAESTRO’s architecture addresses fundamental limitations in existing VLMs for VQA by: 

1. Enabling Rich Multimodal Interactions – Unlike existing VLMs, MAESTRO fully 

integrates the audio modality (speech and non-speech) and aligns them temporally with 

information from video frames in a unified space 

2. Adaptive Global-Local Reasoning Loop– This iterative reasoning process enables the 

model to focus selectively on relevant video segments, which adapts the model’s 

understanding to complex queries that require fine-grained temporal and multimodal 

analysis. 

 
Figure 7: Examples of MAESTRO’s responses for MSVD-QA, MSRVTT-QA 

 

5 Discussion 

5.1 Automated content moderation  

By integrating visual, audio, and textual modalities into a unified system, MAESTRO enables 

more accurate identification of harmful content, even when hateful messages are subtle or 

distributed across modalities. Its ability to process multimodal inputs dynamically and 

contextually ensures higher precision and recall, making it a valuable tool for social media 

moderation, content review platforms, and regulatory frameworks seeking to curb the spread 

of harmful multimedia content. 

 

6 Conclusion 

Our proposed MAESTRO framework redefines multimodal reasoning in Vision-Language 

Models (VLMs) by integrating vision, audio, and text into a unified feature space through 

MAESTRO–Unified Multimodal Alignment and adopts dynamic and iterative reasoning 

through our MAESTRO– Adaptive Global-Local Reasoning Loop. Beyond achieving state-of-

the-art performance in hateful video detection, MAESTRO fundamentally advances VLM 

capabilities in Video Question Answering (VQA), setting new benchmarks (MSVD-QA, 

MSRVTT-QA, and ActivityNet-QA) for understanding actions, objects, and high-level events 

in videos. These results demonstrate its potential as a foundational framework for diverse 

multimodal reasoning tasks as well as broader applications like misinformation detection, 

disaster response, and human rights monitoring. 
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8 Appendix 

 

1.1: Architecture of PANN (top) and HTSAT (bottom) 

 

 
(Kong, Q., Cao, Y., Iqbal, T., Wang, Y., Wang, W., & Plumbley, M. D. (2019). PANNS: 

Large-Scale pretrained audio neural networks for audio pattern recognition. arXiv 

(Cornell University). https://doi.org/10.48550/arxiv.1912.10211) 
 



 

 (HTS-AT: a hierarchical Token-Semantic audio transformer for sound classification and 

detection. (2022, May 23). IEEE Conference Publication | IEEE Xplore. 

https://ieeexplore.ieee.org/document/9746312) 
 

1.2: Table 1: Model performance for zero-shot multi-class labelling of SocialSound-11k test set 

 

1.3 : Importance of Time Alignment in Video Understanding  

Some previous approaches to incorporating the audio modality, such as PG-Video-LLaVA, typically involve 

simply appending the entire transcript to the input. However, this approach fails to account for the temporal 

dependencies inherent in audio data, leading models to overlook crucial time-dependent information. 

 

Figure 3: An example where the visual content is non-hateful, but the audio, when synchronised appropriately, introduces hateful elements. 

1.4: Prompt 1 

"Video Content: {video_content} 

Assess whether the video meets the following two criteria: Criteria 1: The video targets a certain individual or 

group of individuals based on a characteristic. Criteria 2: The video discriminates against, blames, or encourages 

harm/fear/hatred toward this individual/group, or threatens societal peace/harmony. 

Your task is to evaluate whether these criteria are met based on the content provided. You will then choose a 

TOOL and a CHUNK ID to apply the TOOL to that CHUNK and gather more information about the video. The 

available AGENTS are: 

1. 'YOLO' to analyse the objects present in the video segment. 

2. 'LLOV' to examine the actions of the people in the segment. 

3. 'DEEPFACE' to analyse the race, age, gender, and emotion of the people in the segment. 

If SUFFICIENT INFORMATION is available to determine whether the video is hateful, respond in the 

following format: [STOP, Explanation on whether the video is hateful or not] 



If INSUFFICIENT INFORMATION is available, select a TOOL and a CHUNK ID to explore further. Respond 

in the following format: [CONTINUE, [chunk_id], [tool]]” 

1.5: Prompt 2 

Prompt: 

"The two criteria for a video being classified as 'hateful' are: Criteria 1: The video targets a certain 

individual or group of individuals based on a characteristic. Criteria 2: The video discriminates against, 

blames, or encourages harm/fear/hatred toward this individual/group, or threatens societal 

peace/harmony. Video Content: {video_content} Based on the provided information, is the video hateful 

according to these criteria? Answer format: [HATEFUL/NOT HATEFUL], [Explanation]" 

1.6: Iterative Reasoning Loop 

 
Figure 4: An overview of MAESTRO’s dynamic iterative reasoning loop 

 

1.7 : Breakdown of Agent Usage 

 

1.8 : Further Analysis of Results of MAESTRO on MultiHateClip 

Incorporation of LLaVA-OneVision Strengths 

While MAESTRO inherits the descriptive accuracy of LLaVA-OneVision, it substantially mitigates 

the latter’s weaknesses, such as incorrect reasoning and labelling. 



Addressing Hallucinations 

Video-LLaMA-7B exhibits hallucinations in its descriptions, introducing irrelevant or fabricated 

details such as “a man and woman standing in a store”, which are absent from the actual video. In 

contrast, MAESTRO’s outputs are free from hallucinations, ensuring fidelity to the input data and 

delivering accurate, context-aware assessments. 

 


